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PREFACE 

In the operation of phased-array radars it is possible, in 

principle, to save power without sacrificing performance by not 

deciding in advance how long an observation should be made, e.g., 

through sequential testing. In practice, some limit must be put on 

the freedom of the designer to choose observation times--hence the 

test is truncated. This Memorandum describes and evaluates a class 

of such tests. 

The work was undertaken as basic research in technology applicable 

to the design of electronically scanned radars of potential use in 

ballistic missile defenses. It is part of a continuing study for ARPA 

on low-altitude defense against ballistic missiles. 

Dr. Julian J. Bussgang, co-author of this Memorandum, is President 

of SIGNATRON, Inc., Lexington, Massachusetts, and is a Consultant to 

The RAh~ Corporation. 
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SUMMARY 

Through a careful examination of the equations by which Wald 

determines the values of the boundaries for tests of sequential 

hypotheses, we are able to obtain interesting relationships for the 

conditional probability distributions of the stage at which the test 

terminates. These enable us to study sequential tests in which the 

boundaries are functions of the sample number. We are particularly 

concerned with tests with convergent boundaries, and investigate a 

set of boundaries which approach those of a truncated Wald test. 

Approximate expressions for the expected sample number and probabil

ities of error are obtained for the tests considered. The obtained 

approximations apply best for gently tapering slopes. Extensions 

of our method can be applied to evaluate various ad hoc schemes for 

truncating tests and to the theory of tests with a varying parameter. 
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I. INTRODUCTION 

The sequential test of statistical hypotheses as analyzed by 

Wald(l) entails two parallel boundaries, the crossing of each of 

which is associated with the acceptance of one of the two alternate 

hypotheses. Although a proof of Stein(
2

) provides assurance that these 

tests terminate with probability 1, in practice it is frequently 

desirable to truncate the sequential test at a pre-determined stage. 

The truncation can occur in many ways; in particular, it may be abrupt, 

i.e., no change in the test procedure is introduced until the trunca-

tion stage itself, or gradual, i.e., the test procedure is modified 

at every stage so that the boundaries monotonically converge. 

A difficulty arises in the treatment of truncated sequential 

tests in that the boundaries are themselves a function of the sample 

size, which is a random variable. Wald(l) derived certain bounds on 

the probabilities of error of an abruptly truncated test, but they 

do not appear to be very tight. 

The main purpose of this Memorandum is to determine some 

approximate relations between the truncated and untruncated tests. 

A class of gradually truncated tests is considered. Results are 

obtained for the Average Sample Number and for the probability of 

accepting an alternate hypothesis. The method employed is based on 

a detailed examination of the relationships used by Wald, and the 

hitherto unnoticed implied relationships for the conditional probabil-

ity distributions of the stage at which the test terminates. The 

same method can be extended to obtain the Operating Characteristic 

and to generate better approximations. 
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IL FUNDAMENTAL RELATIONS 

Following Wald(l) we consider sequential tests on the sequences 

x
1

,x
2

, ... of identically and independently distributed random varia

bles, where we know that the probability measure on the sample space 

is generated by one of two probability density functions, p
0

!or p
1

. 

It is the purpose of the sequential alternate hypothesis test to 

determine which of the density functions governs the observations. 

We shall use the standard measure on the infinite sample space (the 

extension of the product measure of finite subspaces)(J) and assume 

that the density functions are such that the likelihood ratios are 

continuous functions of x
1

, ... ,xn for all n. 

The sequential test is performed as follows: at each stage in 

the selection of the sample the likelihood ratio is formed. This 

process is continued as long as 

f
0

(m) m 
e < II 

j=l 

£
1 

(m) 
< e m 1,2, ... ,n-1 

and ceases at some stage n as soon as one of the inequalities is 

(1) 

violated. For the sake of clarity in presentation, the terminal stage 

is denoted by n as distinguished from an arbitrary stage m; n is a 

random variable. 

Let H
0 

and H
1 

represent the null and alternate hypotheses and 

let a and S be the errors of the first and second kind. We associate 

a violation of the lower inequality with the acceptance of H
0 

and a 

violation of the upper inequality with the acceptance of H
1

. 
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The functions f
0

(m) and f
1

(m) in (l) are assumed to be either 

constant, or monotonically non-decreasing and non-increasing, respec-

tively. In either case the test terminates with probability l as 

long as f
0

(m) and f
1

(m) are bounded, which we assume to be the case. 

The object of this Memorandum is to study truncated tests; truncation 

occurs when, for some value of m, say N, f
0

(N) = f
1

(N), since at this 

point one of the inequalities in (l) must be violated. (The assump-

tion that the likelihood ratio is continuous precludes the possibility 

that both inequalities be violated simultaneously except for a set of 

paths of probability zero.) Notice that if f.(N) ~ 0, i=O,l, we 
l. 

could accept a hypothesis when the likelihood ratio is less than 

unity, i.e., when the hypothesis is~ posteriori less likely. It 

appears reasonable to always accept the ~ posteriori more likely 

hypothesis. Therefore we require that f 0 (N) = f 1 (N) = 0 if the two 

hypotheses are ~ priori equally likely and the costs of incorrect 

decisions are equal. If the two hypotheses are not equally likely or 

if the tesn:has different costs associated with the acceptance of each 

hypothesis, the value of f.(N) (i=O,l) at truncation would not 
l. 

necessarily be zero but would depend upon the ratio of a priori 

probabilities and costs. 

* "!: 
Let ~O (n) and ~l (n) be the probability measures, corresponding 

to H
0 

and H
1

, of the set of paths x 1 , x
2

, ... ,xn which cause the lower 

th 
inequality in (1) to be violated for the first time at the n stage. 

(The notation is similar to Wald's: the single and double asterisks 

indicate the condition that the process exceeds the lower and upper 

bounds, respectively. The subscript i=O,l indicates which hypothesis 
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** ** is true.) Similarly ~O (n) and ~l (n) are these quantities with 

respect to the upper inequality. We define the following conditional 

probability density functions 

* ** _,_ ~i (n) 
** ~- (n) 

pin (n) (n) 
1. 

(i=O, 1) (2) OJ pi 00 

L ~i* (n) I ** ~i (n) 

n=l n=l 

*"k 
where, for example, p

1 
(n) is the probability that the test termi-

th 
nates at the n stage conditioned by the facts that H

1 
is the true 

hypothesis and that the upper inequality is the one which is violated. 

Based on these conditional probability density functions, correspond-

ing conditional expectations can be calculated. They are denoted by 

In the following we restrict our attention to the upper inequality, 

the violation of which results in the acceptance of H
1

; similar results 

hold for the lower inequality resulting in the acceptance of H
0

. Let 

x
1

, ... ,xn be a sample path that results in the violation of the upper 

. l' h th Th 1nequa 1.ty at t e n stage. en 

1 

Let S be the set of n-tuples for which the above inequality holds, 

conditioned by the fact that expression (1) was satisfied at the n-1 

previous stages. Then 
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where ~ is n-dimensional Lebesque measure. The existence of these 

integrals is easy to verify; Eq. (4) is equivalent to the following 

statement, which better suits our purposes, 

** f 1(n) ** 
~ 1 (n) ? e 1-J. 0 

(n) (5) 

Furthermore, we shall assume that the inequality in (5) is in fact 

an equality. The implications of this assumption will be discussed 

at the end of Section III. Wald makes the same assumption, which is 

often described as "neglecting the excess over the boundaries," when 

fl (n) 

he lets the constant upper threshold A (i.e., e A> 1) be 

co 

equal to (1-~)/a. Since, in the Wald test II-L 1**(n) = 1-p and 

n=l 

a, the analog of Eq. (4) is 1-p > A a. Setting A= 

n=l 

(1-S)/a implies that 

(6) 

for all n. Since all the quantities are positive this follows for 

the following reason: if, for any n, the left-hand side in Eq. (6) 

were greater than the right-hand side, the sums over all n would give 

A< (1-~)/a, which contradicts the assumption that A= (1-p)/a. The 

(0 

- i equation I tt
1
** (n) 1-~ should be obvious; this is simply the 

n=l 

probability, given that H1 is true, that the test gives the correct 

answer. Similarly, I ~O ** (n) 

n=l 

a is the probability of error when 



/ 

6 

H
0 

is the true hypothesis. 

With respect to the Wald test, the conditional probabilities 

given in Eq. (2) are 

** pl (n) 

*~'( 

~1 (n) 

1-S 
** Po (n) 

** ~0 (n) 

Ci 

Thus we have the following lemma and its corollaries: 

LEMMA 1: 

(7) 

Consider a Wald test (neglecting the excess over the boundaries) 

which leads to the acceptance of the alternate hypothesis (H
1
). For 

such a test, the conditional probability density function that the 

test ends at the nth stage, given that the null hypothesis (H
0

) is 

true, is equal to the conditional probability density function that 

the test ends at the nth stage, given that the alternate hypothesis 

** "ft is true; i.e., p
0 

(n) = p
1 

(n) for all n. (Similarly, in the 

ft *' 
case when H

0 
is accepted, p

0 
(n) = p

1 
(n).) (See footnote.) 

Corollary l. 1 

In a Wald test the conditional moments of the sample size, when 

they exist, are all equal, i.e., 

** r E
0 

(n ) ** r * r E1 
(n ), E0 

(n) * r E
1 

(n ) 

Note: This symmetry relationship on the conditional distribution of 
n was first observed by Bussgang and Middleton (Ref. 4) under certain 
specific conditions on the probability density function of the log
arithm of the probability ratio. The normal distribution was ob~ 
served to satisfy these conditions. 

I' 
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Corollary 1. 2 

Referring to the general test defined in Eq. (1) under the assump-

tion that Eq. (5) is an equality, the following equalities are 

established 

**.( £ 1 (n)) = ~ 
E0 . e CY 

**( -f1 (n)) 
E

1 
e __Q_ 

1-S 

1 

(Similar results are obtained wh~n H
0 

is accepted.) 

(8) 

(9) 

(10) 

Both the lemma and its corollaries hold if the observations x 1 , 

x
2

, ... are not independent. The independence of the samples, assumed 

in Section II, is actually first necessary in the next Section in 

calculating the Average Sample Number. 
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III. TESTS WITH GENTLY SLOPING BOUNDARIES 

Consider the modified sequential alternate hypothesis test defined 

in expression (1) for which 

f
0

(n) 

f 
1 

(n) 

r 
-b (1 - .!!) 0 

N 

= a 

where 0 < r 0 , r 1 ~ 1 and a and bare positive. The graph of f
1

(n) is 

shown in the accompanying figure. In what follows the tilda sign (~) 

distinguishes the quantities characterizing the modified test from 

the corresponding quantities in the Wald test. 

N 

A class of upper boundaries of the truncated test 

The graph of f
0

(n) is similar. 

If we rewrite expression (1) for the logarithm of the likelihood 

ratio we obtain 
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m 
pl (xj) r 

I 
r 

-b (1 - m) 0 log (1 - !!!) 1 (11) - < 
Po(xj) 

<a 
N ' N 

j=l 

m 1' 2, ... ' n-1 

This is the equation which first interested the authors and provided 

the motivation for the relationships shown in Section II. In partie-

ular, if we consider the case where p.(x) = N(i,a) (normal distribu-
1. 

tion with mean i and variance a) then Eq. (11) defines a random walk 

(sums of independent random Gaussian-distributed variables) with 

convergent absorbing boundaries. 

Let E. (n) (i=O, 1) be the average test length for the test de-
l. 

fined in Eq. (11)' conditioned by the fact that H. is the true 
l. 

hypothesis, and let a and ~ be the errors of the first and second 

kind for the test. We shall obtain approximate values for all of 

these quantities. Note that as N ~ ro, Eq. (11) defines the standard 

Wald test where a = log A and b = - log B. We require that a/N and 

-b/N be small; this is what we mean by gently sloping boundaries, 

since in the r 1 = 1 case, -a/N is the slope of f
1

(n); in general 

-r
1
;;N is the derivative of f

1
(n) at n=O. Similar results apply to 

fo(n) with a replaced by b. 

Since a/N and -b/N are small, the tests that we are examining 

are very close to the Wald test, whose boundary begins with the same 

value. They might be considered as Wald tests with slightly modified 

boundaries. This is significant since a meaningful interpretation 

of our results is obtained by comparing the class of tests discussed 
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here to the Wald test with a = a = log A, b = b = - log B. 

In the following we assume that a and S are very small so that 

1-a~ 1 and 1-S~ 1. This assumption is not necessary but it greatly 

simplifies the resulting expressions. Following this assumption the 

equation 

(12) 

is replaced by 

(13) 

Pl (xj) 
Now, setting u = E and z = log - we use a well-known result of 

N j p0 (xj)' 

sequential analysis,(l,
3

) together with the often-mentioned neglect 

of excess over the boundaries, to obtain two equalities: 

(14) 

and 

[ ,... ro] ~ ~ **[~ r1J -b (1-u) + (1-pJ E
1 

a (1-u) _.' (14a) 

When S << 1, the first term'~on the right-hand side of (14a) can be 

ignored and by Eq. (13) we obtain 

E
1 

(z) ~ E'/'* ~ (l-u) r ~] 

~ E1**~ (1 - r 1u ~ 
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Thus 

r
1 

a 

El (z) + -N-

where we neglect all the conditional moments of u higher than the 

first. The reason for this will be discussed below. 

(15) 

rl 
In order to obtain; we use Eq. (9) with f

1
(n) =a (1-u) , so 

that 

(16) 

Taking in account our approximation 1-~ ~ 1, neglecting the condi-

tional moments of u higher than the first in the Taylor series expan-

""'-J ** sion about u=O, and substituting Eq. (15) for E
1 

(n), we get 

Equations (15) and (17) apply when the null hypothesis is true, by 

replacing a by -b,; by sand E
1

(n) by E
0

(n). 

Now consider the Wald test with upper boundary ea and lower 

-b 
boundary e and let a and ~ be the probabilities of error of the 

first and second kind. If a and S are very small, E
1

(n) ~ a/E 1(z) 

and e-a ~a. Suppose a= a, i.e., the boundaries of the Wald test 

(17) 

and the modified test begin (n=O) at the same points. We get from Eq. 

(15) 
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(18) 

and in place of Eq. (17) we have 

(19) 

From Eq. (18) we see that E
1
(n)/(l+r

1
) < ~1 (n) ~. E

1
(n); this is to be 

expected since, because of the truncation, the tests which we con-

sider must have a shorter expected test length. However, because of 

the optimality of the Wald test the probability ~ must be greater 

than a, as it is (see Eq. (19)). In fact, if a were set equal to a 

we would expect the corresponding test with converging boundaries to 

have a greater expected length than the Wald test. This in turn 

implies also that the truncated test must begin at a> a. 

In review, a is the probability of error of the first kind for 

a Wald test with upper boundary 
a 

e . The probability a is the prob-

ability of error of the first kind for a test with upper boundary 

exp [ 'i' (1 - £) r ~]' where we no longer assume that a = a but assume 

a = a. It is immediately obvious that under those conditions ; > a, 

since by (17) 

[+ N 

~2 

r
1
a] -a 

r
1

a 
(20) Ct Cit!::$ e 

E
1 

(z) + 

since 
-a 

and the term in the brackets is greater than l. Ct e 
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Two additional questions of interest need clarification. First, 

in calculating the conditional moments of u = ~ we disregard all 

moments except the first. Actually when we first obtained our 

results we included the first two moments and argued that the third 

** moment could be neglected. This was because u > 1 so that E
1 

(u) > 

*7<2 **3 
E1 (u) > E1 

(u ), and further it is reasonable to believe that 

these inequalities are non-trivial. Also in the expression of the 

3 
u term in Eqs. (15) and (17) the coefficient is dominated by 1/(3!). 

Thus we satisfied ourselves that only the first two moments had to be 

included. To evaluate the equations including the first two moments 

we obtained an expression for E.(n
2
) (i=O,l) from the two additional 

~ 

equations. 

.... .. _ 2 [ }2 
E~~ (n ) -~i (z) 

(21) 

The expressions that we then obtained for Eqs. (15), (17), (18) and 

(19) were cumbersome and added no easy insight into the behavior of 

the tests. Thus we decided to display our results with only the 

first moment included. Greater accuracy can be obtained by includ-

ing the second moments if this is desired. 

By keeping only the first moment of u in Eq. (14) and in the 

results which follow, we are essentially approximating the boundaries 

of the converging test by straight lines. The implication is that 

the behavior of the test with linear boundaries corresponds to the 



14 

behavior of the test with the actually specified boundaries. Reten-

tion of higher moments of u results in using higher-order polynomial 

approximations. It appears that there is no restriction on the order 

of polynomial approximation that can be tried (if the distribution of 

z, the logarithm of the likelihood ratio, is known) although the 

calculations grow increasingly more cumbersome. 

The second question deals with the assumption that Eq. (5) is 

an equality. This is equivalent to assuming that for all the sa~ple 

paths that result in the violation of expression (1) at the upper 

th 
limit at the n stage, the equality is achieved. In other words, 

f
1

(n) 
considering e as an upper boundary, we neglect the excess over 

the boundary. The validity of this assumption depends upon the pro-

perties of the stochastic processes generated by the density func-

tions p
0 

and p
1

. If almost all the paths of the processes are 

continuous and if the upper and lower boundaries are continuous, 

then we can devise continuous tests for which this assumption is 

satisfied (see also Ref. 5). However, for specific density functions 

p
0 

and p 1 
not of this class one must decide the extent to which the 

results obtained in this Memorandum apply. 

We note further that for the boundaries given at the beginning 

of this section, the assumption of equality in (5) becomes more 

strained as the boundaries converge, especially if the procedure can-

not be approximated by a continuous procedure. If we let the para-

meters r
0 

and r
1 

approach zero, the test under consideration is the 

th 
Wald test with a final decision at the N stage (determined by 

whether the likelihood ratio is greater or less than 1). However, 
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at this stage there is clearly excess over the boundaries. Even by 

passing to continuous tests, our results do not apply when parallel 

boundaries are abruptly truncated because the boundaries are discon-

tinuous at the last stage. That is why Eqs. (15), (17), (18) and (19) 

are meaningless for r 0 = r 1 = 0. These equations give the results 

for the Wald test, but that is because our assumption of neglecting 

the excess over the boundary results in our neglecting the stage at 

which truncation takes place. 

A comment is in order on the closeness of the approximate equali

ties (15) and (17). In the case of r 1 e 1, we can compare our results 

with the exact results calculated by T. W. Anderson for a Wiener 

process. (
6

) For example, for a= 3.981, N = 600.25 and E
1 

(z) = 0.02, 

our result (Eq. (15)) yields E
1

(n) = 149 rather than 139.2; for 

a= 7.104, N = 870.26 and E
1

(z) = 0.02, the approximation (15) gives 

E1 (n) = 252 in place of 249.4. Our approximation for E
1 

(n) appears 

therefore quite satisfactory in these cases. The approximate expression 

(17) gives, in the same two cases, ~ = 0.023 and 0.0064 in place of 

0.05 and 0.01. Since the right-hand side of (17) is a truncated 

expansion of an exponential series with a positive exponent, it is 

not surprising that (17) understates the value. The approximations 

improve as r
1 

decreases. When r
1 

> 1, the curvature of the boundaries 

is reversed, the initial slope is no longer gentle and expressions 

based on just the first two terms of a polynomial expansion will not, 

in general, suffice. 
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IV. CONCLUSIONS 

In most applications of the sequential procedure it is desir

able to set a definite upper limit for the number of observations. 

This can be achieved by changing the rules of procedure in such a 

way that by a certain stage N the acceptance and rejection regions 

meet, eliminating the "defer decision" region of the original 

sequential test of Wald. The original Wald procedure involves two 

parallel boundaries which, in the application of this procedure to 

detection problems, can be implemented as two fixed thresholds 

against which the detector output is compared. No decision is made 

as long as the detector output remains between the two thresholds. 

Parallel boundaries are a consequence of assuming that the observa

tions are independent,)that the cost of taking each observation is the same, 

and that the time and hypothesized probability distributions remain un

changed throughout the test. If the cost of each observation were to 

increase as the test progressed, the test boundaries would monotonically 

converge. The class of modified test procedures analyzed in this Memoran

dum possesses this property. A practical interpretation of such boundaries 

is that the urgency to terminate the test becomes greater as the trunca

tion point is approached. Another interpretation is that the absolute 

value of the logarithm of the likelihood ratio is expected to decrease 

with the progress of the test. This would occur if the two hypotheses 

converge. 

The approximations made in this Memorandum imply that the 

truncation point is sufficiently beyond the Average Sample Number 

so that most tests terminate before the truncation point is reached. 

Thus events at the truncation point itself can, in fact, be ignored. 
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When the boundaries have no slope (r=O), the truncation stage N 

disappears from the equations and the test behaves as the original 

Wald test. 

The general method of analysis presented in this MemorandQm is 

to approximate non-constant boundaries by polynomials in the stage 

number. The approximation actually used here to illustrate the 

method is to retain only the first two terms of the binomial 

expansion of (1-u)r. A further study is required to determine the 

best polynomial approximation of a given degree. 

The modification of the boundaries changes not only the Average 

Sample Number but also the probabilities of error of the first and 

second kind. Specifically, the probabilities of error increase 

relative to a test whose boundaries begin at the same points and 

remain parallel. The probabilities of error of the modified test can 

be made to equal those of the unmodified test only if the boundaries 

of the former begin outside those of the latter. 

It should be remarked that, in our opinion, the optimality of 

the sequential test is intimately related to the equality of condi

tional probabilities of terminating the test proved in Section II of 

this Memorandum. We have work in progress which attempts to develop 

a simple proof of the optimality of sequential tests based on this 

property of the Wald test. 

The results presented in this Memorandum apply to cases when 

either one or both boundaries are gently sloped towards the trunca

tion point. We have encountered this situation in the study of 

sequential estimation. Additional applications of these results 



18 

should arise in problems of random walk since sequential tests can 

be regarded as a random walk with absorbing barriers, 
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